C4-C3-C10B	117 (1)	$\mathrm{C} 12 \mathrm{~A}-\mathrm{C} 13 A-\mathrm{Cl} 4 \mathrm{~A}$	122 (4)
C2-C3-C10A	123 (2)	C15A-C14A-C13A	121 (4)
C4-C3-C10A	113 (1)	C14A-C15A-C16A	114 (4)
C9-C4-C3	112 (1)	C17A-C16A-C15A	125 (4)
C8-C4-C3	113 (2)	C16A-C17A-C12A	123 (4)
C9-C4-C5	110 (1)	$\mathrm{C} 5-\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 1$	109 (2)
C8-C4-C5	106 (2)	$\mathrm{C} 11 \mathrm{~B}-\mathrm{C} 10 B-\mathrm{C} 3$	115 (1)
C3-C4-C5	114 (1)	$\mathrm{Cl} 10 \mathrm{~B}-\mathrm{C11B-C12B}$	111 (2)
$\mathrm{C} 6 \mathrm{~B}-\mathrm{C} 5-\mathrm{C} 4$	114 (1)	$\mathrm{C} 17 B-\mathrm{C} 12 B-\mathrm{Cl} 3 B$	113 (3)
C4-C5-C6A	112 (2)	$\mathrm{C} 17 \mathrm{~B}-\mathrm{C} 12 B-\mathrm{C} 11 B$	120 (3)
$\mathrm{C} 1-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5$	109 (3)	$\mathrm{C} 13 B-\mathrm{Cl} 12 B-\mathrm{Cl1B}$	123 (3)
O3A-C7-C2	110 (2)	$\mathrm{C} 14 B-\mathrm{Cl} 3 B-\mathrm{Cl} 2 B$	126 (4)
$\mathrm{O} 3 \mathrm{~B}-\mathrm{C} 7-\mathrm{C} 2$	128 (2)	$\mathrm{Cl} 5 \mathrm{~B}-\mathrm{C14B-C13B}$	113 (4)
O2A-C8-O1A	125 (3)	$\mathrm{C} 14 B-\mathrm{Cl} 5 B-\mathrm{Cl} 6 B$	119 (4)
O2A-C8-C4	121 (3)	$\mathrm{C} 17 B-\mathrm{Cl} 6 \mathrm{~B}-\mathrm{C} 15 B$	123 (4)
$\mathrm{O} 14-\mathrm{C} 8-\mathrm{C} 4$	114 (3)	$\mathrm{C} 12 B-\mathrm{C} 17 B-\mathrm{Cl} 16 B$	122 (4)
$\mathrm{O} 2 \mathrm{~B}-\mathrm{C} 9-\mathrm{O} 1 B$	122 (2)		
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$		-3(2)	
C3-C4-C5-C6A		34 (3)	
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6 \mathrm{~A}-\mathrm{Cl}$		-61 (3)	
$\mathrm{C} 5-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2$		55 (3)	
$\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$		-24(3)	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10 \mathrm{~A}-\mathrm{C} 11 \mathrm{~A}$		-80 (3)	
C3-C10A-C11A-C12A		179 (3)	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$		-2 (2)	
C3-C4-C5-C6B		-27(2)	
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6 \mathrm{~B}-\mathrm{Cl}$		58 (2)	
$\mathrm{C} 5-\mathrm{C} 6 \mathrm{~B}-\mathrm{Cl}-\mathrm{C} 2$		-60 (2)	
$\mathrm{C} 6 \mathrm{~B}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$		34 (2)	
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$		82 (2)	
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{Cl} 10 \mathrm{~B}-\mathrm{C} 11 \mathrm{~B}$		-112 (2)	
$\mathrm{C} 3-\mathrm{Cl} 10 \mathrm{C}-\mathrm{Cl1B-Cl2B}$		165 (2)	

All calculations were performed using a VAX3400 computer at the Computer Center, Indian Association for the Cultivation of Science.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: MULTAN88 (Debaerdemaeker et al., 1988). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

The authors like to thank Professor U. R. Ghatak, Indian Association for the Cultivation of Science, Calcutta, for helpful discussions and Professor T. P. Singh, All India Institute for Medical Sciences, New Delhi, for the single-crystal diffractometer facility. One of the authors (SP) wishes to acknowledge CSIR, New Delhi for financial support through the grant No. 02 (368)/92/EMR-II.

[^0]
References

Busing, W. R. (1981). WMIN. A Computer Program to Model Molecules and Crystals in Terms of Potential-Energy Functions. Oak Ridge National Laboratory, Tennessee, USA.
Debaerdemaeker, T., Germain, G., Main, P., Refaat, L. S., Tate, C. \& Woolfson, M. M. (1988). MULTAN88. A System of Computer Programs for the Automatic Solution of Crystal Structures from Xray Diffraction Data. Universities of York, England, \& Louvain, Belgium.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Frinjuelli, F., Germani, R., Pizzo, F. \& Savelli, G. (1989). Tetrahedron Lett. 30, 1427-1428.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Mirsky, K. (1978). Proceedings of an International Summer School in Crystallographic Computing, pp 169-182. Delft University Press.
Pal, S., Mukhopadhyaya, J. K. \& Ghatak, U. R. (1994). J. Org. Chem. 59, 2687-2694.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2510-2512

2-(1-Hydroxy-4,4-dimethyl-2-oxobutyl)-4-methoxy-1-naphtholactone

Nirmalya P. Nayak, ${ }^{a}$ Alok K. Mukherjee ${ }^{a}$ and Monika Mukherjee ${ }^{b}$
${ }^{a}$ Department of Physics, Jadavpur University, Calcutta 700032, India, and ${ }^{b}$ Department of Solid State Physics, Indian Association for the Cultivation of Science, Calcutta 700032, India. E-mail: sspmm@iacs.ernet.in

(Received 14 February 1996; accepted 30 April 1996)

Abstract

The crystal structure of the tricyclic keto lactone, $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$, has been determined by X-ray diffraction. The eight-membered heterocyclic ring in the molecule displays a distorted boat conformation in contrast to the boat-chair conformation more favoured in various oxy-gen-containing eight-membered ring systems.

Comment

Medium-sized-ring lactone compounds (having a ring containing 8-11 atoms), which are among the evergrowing number of natural products (Rousseau, 1995), are becoming increasingly important. Several eight-membered-ring lactones having marine-plant origin have been isolated recently and characterized (Proksa, Uhrin, Adamcova \& Fuska, 1992; Fang et al., 1993; Brown, 1994). A systematic knowledge of the crystal structures and the effect of substituents on the conformation of the lactone rings is seen to play a vital rôle in the development of efficient methods for the synthesis of compounds possessing this framework. A tricyclic enedione (2) was obtained as the major product (60% yield) during an acid-induced intramolecular cyclization of the diazomethyl ketone (1) leading to the stereocontrolled synthesis of the angularly ester-substituted trans-octahydrophenanthrene ring systems related to diterpenes
(Das, Saha \& Mukherjee, 1995). A minor product (16\% yield) isolated from the cyclization reaction as a crystalline compound (m.p. $446-447 \mathrm{~K}$) was identified from spectroscopic data as a tricyclic keto lactone (3) incorporating an eight-membered oxygen-containing ring. Single crystal X-ray analysis of (3) was undertaken to confirm the structure, especially the conformation of the oxygen-containing heterocycle, and to build up a hierarchy for such systems.

(1)

(2)

(3)

An ORTEPII (Johnson, 1976) view of the molecule with atom-labelling and ring-numbering schemes is given in Fig 1. The structure consists of discrete molecules with a methoxynaphthalene moiety fused to a substituted oxa-cyclooctene ring (A) with methyl groups at C17 and C18 in axial and equatorial positions, respectively. The eight-membered ring A adopts a distorted boat conformation, as shown by the ring torsion angles (Table 2). The two halves of ring $A, \mathrm{C} 12, \mathrm{C} 13, \mathrm{C} 14, \mathrm{O} 3$ and $\mathrm{C} 15, \mathrm{C} 1, \mathrm{C} 10, \mathrm{C} 11$, are planar with maximum deviations of $0.010(1) \AA$ for C 13 and 0.018 (1) \AA for Cl from the respective least-squares planes, and are inclined to each other at $67.39(9)^{\circ}$. A basal plane can be defined by $\mathrm{C} 1, \mathrm{C} 10, \mathrm{C} 13$ and C 14 [maximum displacement 0.080 (1) \AA for C1]; the remaining four endocyclic atoms, $\mathrm{C} 11, \mathrm{C} 12, \mathrm{O} 3$ and C 15 , are displaced in the same direction from the basal plane by 0.835 (3), 1.236 (3), 0.998 (3) and 1.195 (3) \AA, respectively. The dihedral angle between the basal plane of the eightmembered ring and the planar naphthalene moiety is $56.26(6)^{\circ}$. There is a marked deviation between the geometry observed for the oxygen-containing eightmembered ring and that of the corresponding boat-chair conformation (Petasis \& Patane, 1992) which the most favoured in eight-membered heterocycles. This is due to strong ring torsional constraints (Moore \& Anet, 1984) such as the endocyclic double bond $(\mathrm{Cl}=\mathrm{C} 10)$ and various ring substituents ($=\mathrm{O}$ at $\mathrm{C} 13, \mathrm{C} 15$ and CH_{3} groups at C11). The Cremer \& Pople (1975) puckering parameters for the eight-membered ring are: $q_{2}=1.542$ (2), $q_{3}=0.091(2), q_{4}=-0.104(2), Q=1.548(2) \mathrm{A}$, $\theta_{2}=86.6(1) \theta_{3}=138.9(7)^{\circ}, \varphi_{2}=123.2(1), \varphi_{3}=$ $-80.2(10)^{\circ}$. Bond lengths and angles are comparable
to the values reported for related lactone structures containing an eight-membered ring (Tapiolas, Roman, Fenical, Stout \& Clardy, 1991; Pirrung, Steeman, Hiemstra \& Speckamp, 1992).

Fig. 1. ORTEPII (Johnson, 1976) view (50% probability level) of the molecule showing the atom-labelling and ring-numbering schemes.

Experimental

Single crystals were obtained by recrystallization from petroleum ether (boiling range 333-353 K).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{4}$
$M_{r}=298.32$
Monoclinic
$P 2_{1} / n$
$a=11.3530(10) \AA$
$b=9.5860(10) \AA$
$c=14.0950(10) \AA$
$\beta=97.360(10)^{\circ}$
$V=1521.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.302 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.31 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by flotation
Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=8-16^{\circ}$
$\mu=0.092 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prismatic
$0.7 \times 0.5 \times 0.3 \mathrm{~mm}$
White

Data collection

Enraf-Nonius CAD-4 diffractometer
$2 \theta-\omega$ scans
Absorption correction:
none
2669 measured reflections
2669 independent reflections
2114 observed reflections $[I>2 \sigma(I)]$
$\theta_{\text {max }}=24.92^{\circ}$
$h=-13 \rightarrow 13$
$k=0 \rightarrow 11$
$l=0 \rightarrow 16$
3 standard reflections monitored every 100 reflections intensity decay: $<2 \%$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0466$
$w R\left(F^{2}\right)=0.1273$
$S=1.038$
2669 reflections
271 parameters
H atoms refined isotropically
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0797 P)^{2}\right.$
$+0.1869 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.214$
$\Delta \rho_{\text {max }}=0.223 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.199 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992,
Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
C1	0.11053 (13)	0.1567 (2)	0.81573 (10)	0.0395 (4)
C2	0.01857 (13)	0.0552 (2)	0.81507 (11)	0.0411 (4)
C3	-0.0895 (2)	0.0650 (2)	0.75226 (14)	0.0555 (5)
C4	-0.1768 (2)	-0.0311 (3)	0.7541 (2)	0.0677 (6)
C5	-0.1617 (2)	-0.1426 (3)	0.8182 (2)	0.0711 (6)
C6	-0.0589 (2)	-0.1576 (2)	0.87928 (14)	0.0575 (5)
C7	0.03367 (13)	-0.0594 (2)	0.87900 (11)	0.0430 (4)
C8	0.14371 (14)	-0.0716 (2)	0.93861 (11)	0.0446 (4)
C9	0.22975 (14)	0.0273 (2)	0.93801 (11)	0.0436 (4)
C10	0.21414 (13)	0.1467 (2)	0.87842 (10)	0.0384 (4)
C11	0.31398 (14)	0.2559 (2)	0.88365 (11)	0.0457 (4)
C 12	0.2643 (2)	0.4060 (2)	0.8689 (2)	0.0566 (5)
C13	0.1581 (2)	0.4277 (2)	0.92131 (15)	0.0596 (5)
C14	0.0346 (2)	0.4148 (2)	0.8671 (2)	0.0671 (6)
C15	0.0867 (2)	0.2684 (2)	0.74184 (12)	0.0505 (4)
C16	0.2652 (2)	-0.2143 (3)	1.0494 (2)	0.0711 (6)
C17	0.3922 (2)	0.2523 (3)	0.9813 (2)	0.0687 (6)
C18	0.3928 (2)	0.2233 (3)	0.8058 (2)	0.0635 (5)
O 1	0.15382 (12)	-0.18795 (14)	0.99422 (10)	0.0651 (4)
O2	0.16670 (14)	0.4510 (2)	1.00634 (11)	0.0829 (5)
03	0.03371 (12)	0.38682 (14)	0.76707 (10)	0.0681 (4)
O4	0.10405 (14)	0.2549 (2)	0.66025 (9)	0.0732 (4)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{C} 1-\mathrm{C} 10$	$1.381(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.417(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.426(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.538(2)$
$\mathrm{C} 1-\mathrm{C} 15$	$1.494(2)$	$\mathrm{C} 11-\mathrm{C} 18$	$1.535(2)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.417(2)$	$\mathrm{C} 11-\mathrm{C} 17$	$1.540(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.421(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.549(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.357(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.507(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.395(3)$	$\mathrm{C} 13-\mathrm{O} 2$	$1.211(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.366(3)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.514(3)$
$\mathrm{C} 6-\mathrm{C} 7$	$1.412(2)$	$\mathrm{C} 14-\mathrm{O} 3$	$1.434(3)$
$\mathrm{C} 7-\mathrm{C} 8$	$1.418(2)$	$\mathrm{C} 15-\mathrm{O} 4$	$1.198(2)$
$\mathrm{C} 8-\mathrm{O} 1$	$1.359(2)$	$\mathrm{C} 15-\mathrm{O} 3$	$1.354(2)$
$\mathrm{C} 8-\mathrm{C} 9$	$1.362(2)$	$\mathrm{C} 16-\mathrm{O} 1$	$1.419(3)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 2$	$121.29(14)$	$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11$	$123.05(13)$
$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 15$	$123.99(14)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$119.08(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	$114.68(14)$	$\mathrm{C} 18-\mathrm{C} 11-\mathrm{C} 10$	$108.70(14)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 3$	$118.2(2)$	$\mathrm{C} 18-\mathrm{C} 11-\mathrm{C} 17$	$108.2(2)$
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	$119.72(14)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 17$	$111.39(14)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$122.1(2)$	$\mathrm{C} 18-\mathrm{C} 11-\mathrm{C} 12$	$109.2(2)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$121.2(2)$	$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$111.86(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$120.2(2)$	$\mathrm{C} 17-\mathrm{C} 11-\mathrm{C} 12$	$107.4(2)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.9(2)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11$	$111.30(15)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$120.3(2)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 12$	$122.8(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 2$	$119.3(2)$	$\mathrm{O} 2-\mathrm{C} 13-\mathrm{C} 14$	$117.8(2)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$122.9(2)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$119.3(2)$
$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 8$	$117.82(14)$	$\mathrm{O} 3-\mathrm{Cl} 4-\mathrm{C} 13$	$113.6(2)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 9$	$124.5(2)$	$\mathrm{O} 4-\mathrm{C} 15-\mathrm{O} 3$	$118.4(2)$
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 7$	$114.37(14)$	$\mathrm{O} 4-\mathrm{C} 15-\mathrm{C} 1$	$123.7(2)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$121.10(14)$	$\mathrm{O} 3-\mathrm{C} 15-\mathrm{Cl}$	$117.69(14)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$122.03(15)$	$\mathrm{C} 8-\mathrm{O} 1-\mathrm{C} 16$	$117.7(2)$
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 9$	$117.83(14)$	$\mathrm{C} 15-\mathrm{O} 3-\mathrm{C} 14$	$117.92(14)$

$\mathrm{C} 15-\mathrm{Cl}-\mathrm{C} 10-\mathrm{Cl1}$	$4.3(2)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{O} 3$	$-2.1(3)$
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$37.3(2)$	$\mathrm{C} 10-\mathrm{C} 1-\mathrm{C} 15-\mathrm{O} 3$	$-90.1(2)$
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$41.4(2)$	$\mathrm{C} 1-\mathrm{C} 15-\mathrm{O} 3-\mathrm{C} 14$	$17.4(2)$
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$-97.9(2)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{O} 3-\mathrm{C} 15$	$60.3(2)$

The structure was solved by direct methods followed by Fourier synthesis and refined by anisotropic full-matrix leastsquares methods on F^{2} for all non- H atoms; H atoms were located from difference Fourier maps and refined isotropically.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CAD-4 Software. Program(s) used to solve structure: MULTAN88 (Debaerdemaeker et al., 1988). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

The authors wish to thank Professor D. Mukherjee, Department of Organic Chemistry, Indian Association for the Cultivation of Science, Calcutta, for providing the crystals and Regional Sophisticated Instrumentation Center, Bose Institute, Calcutta for X-ray data collection at the recently installed CAD-4 diffractometer during its trial period.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: LII147). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Brown, G. D. (1994). Phytochemistry. 35, 425-434.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Das, S., Saha, A. K. \& Mukherjee, D. (1995). Tetrahedron Lett. 36, 2315-2316.
Debaerdemaeker, T., Germain, G., Main, P., Refaat, L. S., Tate, C. \& Woolfson, M. M. (1988). MULTAN88. A System of Computer Programs for the Automatic Solution of Crystal Structures from Xray Diffraction Data. Universities of York, England, and Louvain, Belgium.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fang, X.-P., Anderson, J. E., Qiu, X.-X., Kozlowski, J. F.. Chang, C.-J. \& McLaughlin, J. L. (1993). Tetrahedron. 49, 1563-1570.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Moore, J. A. \& Anet, F. A. L. (1984). Comprehensive Heterocyclic Chemistry, Vol. 7, edited by W. Lwowski, pp. 653-707. Oxford: Pergamon Press.
Petasis, N. A. \& Patane, M. A. (1992). Tetrahedron. 48, 5757-5821.
Pirrung, F. O. H., Steeman, W. J. M., Hiemstra, H. \& Speckamp, W. N. (1992). Tetrahedron Lett. 33, 5141-5144.

Proksa, B., Uhrin, D., Adamcova, J. \& Fuska, J. (1992). J. Antibiot. 45, 1268-1272.
Rousseau, G. (1995). Tetrahedron. 51, 2777-2849.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tapiolas, D. M., Roman, M., Fenical, W., Stout. T. J. \& Clardy, J. (1991). J. Am. Chem. Soc. 113, 4682-4683.

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: LIl144). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

